Boundary singularities on a wedge-like domain of a semilinear elliptic equation
نویسندگان
چکیده
منابع مشابه
A two-phase free boundary problem for a semilinear elliptic equation
In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary. We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...
متن کاملa two-phase free boundary problem for a semilinear elliptic equation
in this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $dsubset mathbb{r}^{n}$ with smooth boundary. we give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of caffarelli and friedman regarding the representation of functions whose ...
متن کاملExistence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملSeparation property of solutions for a semilinear elliptic equation
In this paper, we study the following elliptic problem ∆u+K(x)u p = 0 in R u > 0 in R (∗) where K(x) is a given function in Cα(R \ 0) for some fixed α ∈ (0, 1), p > 1 is a constant. Some existence, monotonicity and asymptotic expansion at infinity of solutions of (∗) are discussed. ∗Research supported in part by the Natural Science Foundation of China and NSFC †Research supported in part b...
متن کاملVery Weak Solutions with Boundary Singularities for Semilinear Elliptic Dirichlet Problems in Domains with Conical Corners
Let Ω ⊂ R be a bounded Lipschitz domain with a cone-like corner at 0 ∈ ∂Ω. We prove existence of at least two positive unbounded very weak solutions of the problem −∆u = u in Ω, u = 0 on ∂Ω, which have a singularity at 0, for any p slightly bigger that the generalized Brezis-Turner exponent p∗. On an example of a planar polygonal domain the actual size of the p-interval on which the existence r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
سال: 2015
ISSN: 0308-2105,1473-7124
DOI: 10.1017/s0308210515000207